Q1, (Jun 2005, Q3)

(i)	T $\cos \theta=0.01 \times 9.8$	M1		resolving vertically	
	$8 / 10 \mathrm{~T}=0.01 \times 9.8$	A1		with $\cos \theta=8 / 10$	
	$\mathrm{~T}=0.1225 \mathrm{~N}$	A1	3	AG	
(ii)	$\mathrm{T}+\mathrm{T} \sin \theta=\mathrm{ma}$	M1		resolving horizontally	
	use of $\mathrm{mr} \omega^{2}$	M1			
	$\omega=5.72 \mathrm{rads}^{-1}$	A1	3		
(iii)	K.E. $=1 / 2 \times 0.01 \times(\mathrm{r} \omega)^{2}$	M1		$1 / 2 \mathrm{mv}^{2}$ with v=rw	$\mathbf{8}$
	K.E. $=0.0588$	A1	2	$\sqrt{ } 0.0018 \times$ their ω^{2}	

Q2, (Jun 2008, Q6)
(i) $\mathrm{T} \cos 60^{\circ}=\mathrm{S} \cos 60^{\circ}+4.9$

(ii) \quad| $\mathrm{T} \sin 60^{\circ}+\mathrm{S} \sin 60^{\circ}=0.5 \times 3^{2} / 0.4$ |
| :--- |
| $(\mathrm{~S}+9.8) \sin 60^{\circ}+\mathrm{S} \sin 60^{\circ}=45 / 4$ |
| $\mathrm{~S}=1.60 \mathrm{~N}$ |
| $\mathrm{~T}=11.4 \mathrm{~N}$ |
| $\mathrm{~T} \cos 60^{\circ}=4.9$ |
| $\mathrm{~T}=9.8$ |
| $\mathrm{~T} \sin 60^{\circ}=0.5 \times 0.4 \omega^{2}$ |
| $\omega=6.51 \mathrm{rad} \mathrm{s}^{-1}$ |

M1		Resolving vertically nb for M1:
A1		(must be components - all 4 cases)
M1		Res. Horiz. mr ω^{2} ok if $\omega \neq 3$
A1		If equal tensions $2 \mathrm{~T}=45 / 4 \mathrm{M} 1$ only
M1		
A1		
A1	7	
M1		Resolving vertically (component)
A1		
M1		Resolving horiz. (component)
A1		
A1	$\mathbf{5}$	or 6.5

Q3, (Jan 2006, Q8)

(i)	$\mathrm{R} \cos 30^{\circ}=0.1 \times 9.8$	M1		resolving vertically	
		A1			
	$\mathrm{R}=1.13 \mathrm{~N}$	A1	3		
(ii)	$\mathrm{r}=0.8 \cos 30^{\circ}=0.693$ or $2 \sqrt{ } 3 / 5$	B1		may be implied	
	$\mathrm{R} \cos 60^{\circ}=0.1 \times 0.693 \omega^{2}$	M1		or $0.1 \mathrm{v}^{2} / \mathrm{r}$ \& $\omega=\mathrm{v} / \mathrm{r}$	
		A1			
	$\omega=2.86$	A1	4		
(iii)	$\mathrm{T}=1.96 \mathrm{~N}$	B1	1		
(iv)	$\mathrm{R} \cos 30^{\circ}=\mathrm{T} \cos 60^{\circ}+0.1 \mathrm{x} 9.8$	M1			
		A1			
	$\mathrm{R}=2.26 \mathrm{~N}$	A1			
	$\mathrm{R} \cos 60^{\circ}+\mathrm{T} \cos 30^{\circ}=0.1 \times \mathrm{v}^{2} / \mathrm{r}$	M1		or $\mathrm{mr} \omega^{2}$ \& use of $\mathrm{v}=\mathrm{r} \omega$	
		A1		with $\mathrm{R}=1.13$ can get M1 only	
	$4.43 \mathrm{~ms}^{-1}$	A1	6		14
(iv)	$\begin{array}{\|l\|} \hline \text { LHS (or RHS) } \\ \mathrm{T}+0.1 \times 9.8 \cos 60^{\circ} \\ \hline \end{array}$	M1*		method without finding R	
		A1		i.e. resolving along PA	
	$\begin{aligned} & \text { RHS (or LHS) } \\ & 0.1 \mathrm{x} \mathrm{v}^{2} / \mathrm{r} \times \cos 30^{\circ} \\ & \hline \end{aligned}$	M1*			
		A1		r to be $0.8 \cos 30^{\circ}$ for A 1	
	solve to find v	M1*		depends on 2* Ms above	
	$4.43 \mathrm{~ms}^{-1}$	A1	(6)		

ALevelMathsRevision.com
Q4, (Jun 2012, Q5)

(i)	$\sin \theta=0.8 \text { or } \cos \theta=0.6 \text { or } \tan \theta=4 / 3 \text { or } \theta=53.1$ $T_{A} \cos \theta+T_{B} \cos \theta=2 \times 1.2 \times 4^{2}$ $T_{A} \sin \theta=T_{B} \sin \theta+2 g$ Solve simultaneously to get at least T_{A} or T_{B} $T_{A}=44.25 \text { and } T_{B}=19.75$	B1 *M1 A1 *M1 A1 Dep*M1 A1 $[7]$	θ is angle AP makes with horizontal Attempt to resolve horizontally and use N2L with a version of acceleration, not just a. Allow $T_{A}=T_{B}$ for M1 only. Use their θ Attempt to resolve vertically Use their θ For both. Allow 44.2, 44.3, 19.7, 19.8
(ii)	$T_{B}=0$ $\begin{aligned} & T_{A} \cos \theta=2 v^{2} / 1.2 \\ & T_{A} \sin \theta=2 g \end{aligned}$ Solve for v or ω $v=2.97$	B1 *M1 A1 B1 Dep*M1 A1 $[6]$	May be implied Attempt to resolve horizontally and use N2L with a version of acceleration, not just a Use their θ Use their θ

Q5, (Jun 2006, Q6)

(i)	$\begin{aligned} & \mathrm{T}=4.9 \mathrm{~N} \\ & \mathrm{~T}=0.3 \times 0.2 \times \omega^{2} \\ & \omega=9.04 \mathrm{rads}^{-1} \end{aligned}$	B1 M1 A1 A1	4	B0 for 0.5 g or $0.3 \mathrm{v}^{2} / 0.2$ and $\omega=\mathrm{v} / 0.2$	
(ii)	$\begin{aligned} & \cos \theta=\sqrt{0.6 / 0.8(0.968)} \\ & \mathrm{T} \cos \theta=0.5 \times 9.8 \\ & \\ & T=5.06 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \text { A1 } \\ & \mathrm{A} 1 \end{aligned}$	4	($\theta=14.5^{\circ}$) angle to vert. or equiv. angle consistent with diagram can be their angle	
(iii)	$\begin{aligned} & \mathrm{T} \sin \theta=0.5 \mathrm{xv}^{2} / 0.2 \\ & \mathrm{v}=0.711 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 A1	3	must be a component of T $(\sin \theta=1 / 4)$ can be their angle	11

Q6, (Jun 2010, Q5)

(i)	$\begin{aligned} & \mathrm{T} \cos 45^{\circ}+\mathrm{R} \sin 45^{\circ}=\mathrm{mg} \\ & \mathrm{~T} \sin 45^{\circ}-\mathrm{R} \cos 45^{\circ}=\mathrm{ml} \sin 45^{\circ} \omega^{2} \\ & 2 \mathrm{~T}=\sqrt{ } 2 \mathrm{mg}+\mathrm{ml} \omega^{2} \\ & \mathrm{~T}=\mathrm{m} / 2\left(\sqrt{2} \mathrm{~g}+1 \omega^{2}\right) \end{aligned}$	*M1 A1 *M1 A1 Dep*M1 A1 6	3 terms 3 terms; $\mathrm{a}=\mathrm{r} \omega^{2}$ Method to eliminate R AG www
(ii)	$\begin{aligned} & \mathrm{R}=0 \\ & 2 \mathrm{R}=\sqrt{ } 2 \mathrm{mg}-\mathrm{ml} \omega^{2} \end{aligned}$ or $\mathrm{T} \cos 45^{\circ}=\mathrm{mg}$ or $\mathrm{T}=\mathrm{ml} \omega^{2}$ Solve to find ω $\omega=4.16 \mathrm{rad} \mathrm{~s}^{-1}$	B1 B1 M1 A1 4	may be implied 10

(i)	$\begin{aligned} & T \cos 30+R \sin 60=m g \\ & T \sin 30-R \cos 60=m(a \sin 30) \omega^{2} \\ & R=\frac{1}{6} m\left(2 \sqrt{3} g-3 a \omega^{2}\right) \end{aligned}$	M1* A1 M1* A1 M1 dep* A1 [6]	Resolving vertically (3 terms) Resolving horizontally (3 terms); an r used where r is not just a Eliminating T and solve for R in terms of m, g, a and ω AG Correctly shown
(ii)	For using $R=0$ to attempt to find either v or T $T=\frac{m g}{\cos 30}=39.6$ $\omega^{2}=\frac{T}{m a}, v=1.19 \mathrm{~ms}^{-1}$	M1 Al A1 [3]	Or attempt to find ω $39.606228 \ldots$ $1.1893309 \ldots$

ALevelMathsRevision.com

Q8, (Jun 2014, Q7)

(i)	$\begin{aligned} & T \cos 30+T \cos 45=0.4 g \\ & T=2.49 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Resolve vertically (3 terms); may be different T 's at this stage $T=2.4918 \ldots .$
(ii)	$\begin{aligned} & \operatorname{cv}(T) \sin 30+\operatorname{cv}(T) \sin 45=0.4 v^{2} / 0.5 \\ & v=1.94 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Resolve horizontally (3 terms); may be different T 's at this stage Or use acceleration $=0.5 \omega^{2}$ $v=1.93904 \ldots$
(iii) (iv)	$\begin{aligned} & (2 A P=) \frac{0.5}{\sin 45}+\frac{0.5}{\sin 30} \\ & A P=0.854 \mathrm{~m} \\ & 2 T \sin \theta=0.4(0.854 \sin \theta)\left(3.46^{2}\right) \\ & T=2.04 \mathrm{~N} \\ & 2 T \cos \theta=0.4 g \\ & \theta=16.5^{\circ} \text { or } 16.6^{\circ} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Reasonable attempt to use trigonometry to find total length of string $\mathbf{A G}(A P=0.85355 \ldots \mathrm{~m})$ θ angle with vertical. Resolve horizontally. Allow with T only. $r=$ component of 0.854 $T=2.04474 \ldots \mathrm{~N}$ using $A P=0.854 \mathrm{~m}, T=2.04367 \ldots \mathrm{~N}$ using exact $A P$ θ angle with vertical. Resolve vertically. Allow with T only $\theta=16.55377 \ldots{ }^{\circ}$ using $A P=0.854 \mathrm{~m}, \theta=16.4526 \ldots{ }^{\circ}$ using exact $A P$ SC M1A0M1A1 for use of T instead of 2T throughout

Q9, (Jan 2010, Q7)

(i)	$\begin{aligned} & \cos \theta=3 / 5 \text { or } \sin \theta=4 / 5 \text { or } \tan \theta=4 / 3 \\ & \text { or } \theta=53.1^{\circ} \\ & R \cos \theta=0.2 \times 9.8 \\ & R=3.27 \mathrm{~N} \text { or } 49 / 15 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\theta=$ angle to vertical
(ii)	$\begin{aligned} & \mathrm{r}=4 \\ & \mathrm{R} \sin \theta=0.2 \times 4 \times \omega^{2} \\ & \omega=1.81 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & {[4]} \end{array}$	
(iii)	$\begin{aligned} & \varphi=26.6^{\circ} \text { or } \sin \varphi=\frac{1}{\sqrt{5}} \text { or } \cos \varphi=\frac{2}{\sqrt{5}} \text { or } \\ & \tan \varphi=0.5 \\ & \mathrm{~T}=0.98 \text { or } 0.1 \mathrm{~g} \\ & \mathrm{~N} \cos \theta=\mathrm{T} \sin \varphi+0.2 \times 9.8 \\ & \mathrm{~N} \times 3 / 5=0.438+1.96 \\ & \mathrm{~N}=4.00 \\ & \mathrm{Nsin} \theta+\mathrm{T} \cos \varphi=0.2 \times 4 \times \omega^{2} \\ & 4 \times 4 / 5+0.98 \cos 26.6^{\circ}=0.8 \omega^{2} \\ & \omega=2.26 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	B1 B1 M1 A1 A1 M1 A1 A1 [8]	$\varphi=$ angle to horizontal Vertically, 3 terms may be implied Horizontally, 3 terms

